Monday, January 8, 2018

IL-3 Differentially Regulates Membrane and Soluble RANKL in Osteoblasts through Metalloproteases and the JAK2/STAT5 Pathway and Improves the RANKL/OPG Ratio in Adult Mice [IMMUNOTHERAPY AND VACCINES]

Bone remodeling comprises balanced activities between osteoclasts and osteoblasts, which is regulated by various factors, including hormones and cytokines. We previously reported that IL-3 inhibits osteoclast differentiation and pathological bone loss. IL-3 also enhances osteoblast differentiation and bone formation from mesenchymal stem cells. However, the role of IL-3 in regulation of osteoblast–osteoclast interactions and underlying mechanisms is not yet delineated. In this study, we investigated the role of IL-3 on the regulation of osteoblast-specific molecules, receptor activator of NF-B ligand (RANKL), and osteoprotegerin (OPG) that modulate bone homeostasis. We found that IL-3 increases RANKL expression at both the transcriptional and translational levels, and it showed no effect on OPG expression in calvarial osteoblasts. The increased RANKL expression by IL-3 induces mononuclear osteoclasts; however, it does not induce multinuclear osteoclasts. Interestingly, IL-3 decreases soluble RANKL by reducing ectodomain shedding of membrane RANKL through downregulation of metalloproteases mainly a disintegrin and metalloproteinase (ADAM)10, ADAM17, ADAM19, and MMP3. Moreover, IL-3 increases membrane RANKL by activating the JAK2/STAT5 pathway. Furthermore, IL-3 enhances RANKL expression in mesenchymal stem cells of wild-type mice but not in STAT5a knockout mice. Interestingly, IL-3 restores RANKL expression in adult mice by enhancing bone-specific RANKL and decreasing serum RANKL. Furthermore, IL-3 increases the serum OPG level in adult mice. Thus, our results reveal, to our knowledge for the first time, that IL-3 differentially regulates two functional forms of RANKL through metalloproteases and the JAK2/STAT5 pathway, and it helps in restoring the decreased RANKL/OPG ratio in adult mice. Notably, our studies indicate the novel role of IL-3 in regulating bone homeostasis in important skeletal disorders.



from The Journal of Immunology current issue http://ift.tt/2CSGscp

0 comments:

Post a Comment